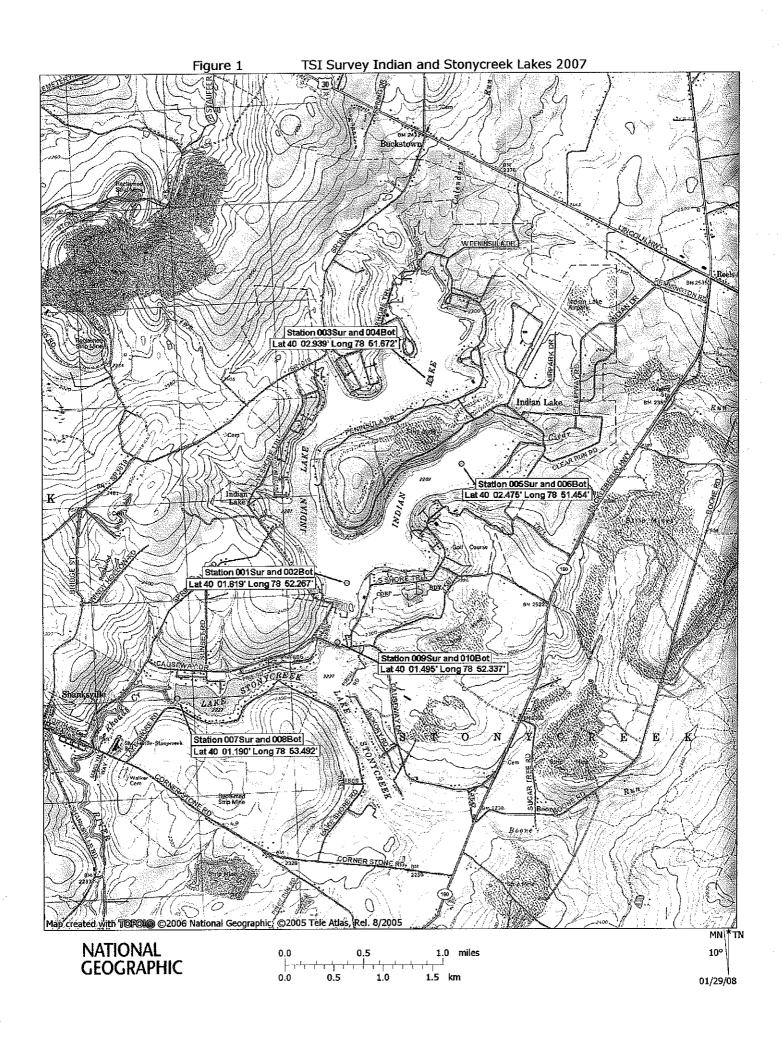
Trophic State Index Surveys
Indian Lake
And
Stonycreek Lake
2007

Rick Spear
Gary Kenderes
Water Pollution Biologists
Pennsylvania Department of Environmental Protection

Introduction

Evaluations of Trophic Status Indices (TSI) were conducted on two lakes in Somerset County by Water Pollution Biologists Rick Spear, Gary Kenderes, and Marc Maestra, and Sewage Planning Supervisor Jack Crislip, all with the Pennsylvania Department of Environmental Protection (PADEP). Lake surveys to determine TSI were performed on Indian Lake and Stonycreek Lake in the spring, summer, and fall of 2007 after discussions with Jack Crislip concerning a housing development proposed waste treatment plant. Present TSI values for Indian and Stonycreek Lake were needed to address the continuing housing growth in the basin area of the lakes.

Indian and Stonycreek Lake are located in Somerset County East of Somerset Pennsylvania and just east of the town of Shanksville, surrounded by agricultural, reclaimed strip mine land, and forested land (Figure 1). Both lakes are located in the same basin adjoining each other, separated only by the constructed dam for Indian Lake, discharging water into Stonycreek Lake. Year round resident homes and summer homes surround both lakes up to the water edge. The major tributaries that feed into Indian Lake are Calendar Run and Clear Run. Stonycreek Lake receives water from Indian Lake and Boone Run. The outlet of Stonycreek Lake forms the stream Rhoads Creek which confluences with Stonycreek River.


Lake Survey Method

The lake surveys collected data on nutrients (phosphorus and nitrogen), chlorophyll-a, and water transparency (secchi disk reading). Water chemistry profiles including dissolved oxygen, pH, temperature, and conductivity were recorded.

There were three sample station locations chosen on Indian Lake. One station was located near the deepest depth which was at the dam outlet. The other two stations were located in the far reaches of each tributary feeding into the lake (Figure 1 and Attachment A - Photographs).

Stonycreek Lake had two sample station locations. One station was located at the dam outlet and the other was near the outlet of Indian Lake (Figure 1 and Attachment A - Photograph). The Boone Run reach was not sampled due to water depth of less than two feet, preventing boat access and being less than the minimum depth of ten feet for surface (Top) and bottom (Bott) water sample grabs.

Both Indian Lake and Stonycreek Lake were sampled on the same day of April 24, July 12, and November 7 of 2007. Surface water samples (Top) were collected 1 meter in depth and bottom water samples (Bot) were collected 1 meter off the bottom at each station location. Water chemistry profiles were record every meter to the lake bottom using the Quantum Hydolab Multimeter. Chlorophyll-a samples were collected just below water surface. All water samples were placed on ice and chlorophyll-a samples were placed on dry ice. All samples were shipped to the PADEP Lab in Harrisburg for analyses using Standard Analysis Code 038.

Stonycreek Lake field sampling, on November 7, was limited to collecting water at the surface station 007 and 009 as a result of a schedule drawdown of the lake (See Attachment A – Photographs). The boat launch was unusable, so access to station 007 and 009 was from shore, wading out or collecting from atop bridge crossing. No water column profile data could be collected at station location 007 and 009 in Stonycreek Lake during November.

In addition to Lake sampling throughout 2007, water samples were collected several times during the year for Indian Lake Borough on Clear Run and Calendar Run. The water samples were collected by Environmental Trainee Gary Martin of the PADEP and analyses were performed by PADEP Lab in Harrisburg using Standard Analysis Code 038.

Basin Geology

The general type of soils surrounding Indian and Stonycreek Lake are Rayne-Gilpin-Wharton-Cavode. All these soil types fall into a range of characteristics from deep to moderately deep, well drained to somewhat poorly drained soils located on nearly level to very steep hills and ridges. The parent bedrock material forming these soils from weathering conditions are shale, sandstone, and siltstone.

Indian Lake dominant soil types which surround the lake and the two major tributaries of Calendar Run and Clear Run are Rayne-Gilpin Channery Silt Loam, Rayne-Gilpin Very Stony Silt Loam, Udorthents-Mine Spoils, Cavode Silt Loam, Hazleton Very Stony Sandy Loam, and Ernest Silt Loam.

Stonycreek Lake and its major tributary of Boone Run are surrounded by the dominant soil types of Udorthents-Mine Spoils, Rayne-Gilpin Very Stony Silt Loam, Rayne-Gilpin Silt Loam, Cavode Silt Loam, Hazleton Very Stony Sandy Loam, and Brinkerton Silt Loam.

Both lakes have Udorthents-Mine Spoils either adjacent to the lakes or within their tributaries. Stonycreek Lake has more drainage land associated with mine spoils (16 %) when compared to Indian Lake (8%).

Basin Hydrology

Indian Lake water comes from the streams of Calendar Run and Clear Run within a drainage area of 13.7 square miles. The area covered by water is 498.7 acres with a storage capacity of 3,420 million gallons. Water detention time is 457 days with a mean depth of 12 meters. Chapter 93 – Water Quality Standards list Indian Lake use as Cold Water Fisheries (CWF).

Stonycreek Lake water comes from Indian Lake and Boone Run also within the 13.7 square miles of drainage area. The area covered by water is 165.97 acres with a storage capacity of 430 million gallons. Water detention time is 17.07 days with a mean depth of 1.5 meters. Chapter 93 – Water Quality Standards list Stonycreek Lake use as CWF.

Point Sources

The following point sources were obtained from PADEP records.

Indian Lake	
Facility	Permit #
Indian Lake Boro Somerset County – Lakewood Sewage	D
Treatment Plant (STP)	PA0030350
Mcclatchey residence STP	PAG046336
Sullivan single residence STP	PA0253243
Camp Allegheny STP	PA0110922
Shroyer single residence STP	PA0204820
Stonycreek Lake	
Facility	Permit #
Glessner single residence STP	PAG046301
Mark Leonberger single residence STP	PAG046227
Kennedy single residence STP	
Printing Operations	PA0205184
Bandstra single residence STP	PAG046358

Non-Point Sources

Indian and Stonycreek Lakes are surrounded by wooded areas with crop fields up on the hill tops and slopes. Reclamation of surface coal mining lands can be found around the major tributaries of Clear Run and Boone Run. The presents of these human activities along with the close proximity of residential septic systems to the lakes can make available, sources of nutrients to both lakes.

Discussion

Indian and Stonycreek Lake are surrounded by upland forested rolling hills mixed with agricultural and reclaimed strip mine lands (Figure 1). Surrounding the lakes are residential homes used year round or for recreational purposes. Most of the home owners constructed boat docks along their water edge property. Indian Lake has a commercial marina close to the dam outlet area along with a boat ramp. Stonycreek Lake has a dirt boat ramp next to the dam which is used by the local residents only. Stonycreek Lake is a shallower lake than Indian Lake with a mean depth of 1.5 meters.

Indian Lake Water Column Profiles

Water chemistry profiles were collected at each station location for each lake survey performed in 2007. During the spring sample period, all sample station locations showed a temperature drop from 3 to 7 meters in depth (epilimnion). Dissolved oxygen only dropped at the bottom depth at all three station locations with the lowest reading at station location 001 and 002 (deepest) of 5.31 mg/l. The pH was consistent and specific conductivity increased at the bottom at all three spring profiles (See Attachment B – Water profiles and Charts).

The summer sample period showed the epilimnion range from 2 to 4 meters in depth. The pH was consistent at all three station locations and dissolved oxygen only dropped near the bottom at station 001 and 002 (deepest) with the lowest reading of 0.05 mg/l. Specific conductivity was mixed with higher and lower values to the bottom.

The water chemistry profiles collected in November sample period showed consistent values for temperature, pH and specific conductivity. Dissolved oxygen dropped only at the bottom for all three sample station locations with the lowest reading of 1.49 mg/l at station location 003 and 004.

Stonycreek Lake Water Column Profiles

Water chemistry profiles were collected at each station location for each lake survey performed in 2007 except the November sample period. The spring sample period showed the epilimnion at 1 meter at station location 007 and 008. Dissolved oxygen and pH was consistent. Specific conductivity increased at the bottom for both station locations. The summer sample period had profile values either consistent or dropped slightly at each station location (See Attachment B – Water profiles and Charts).

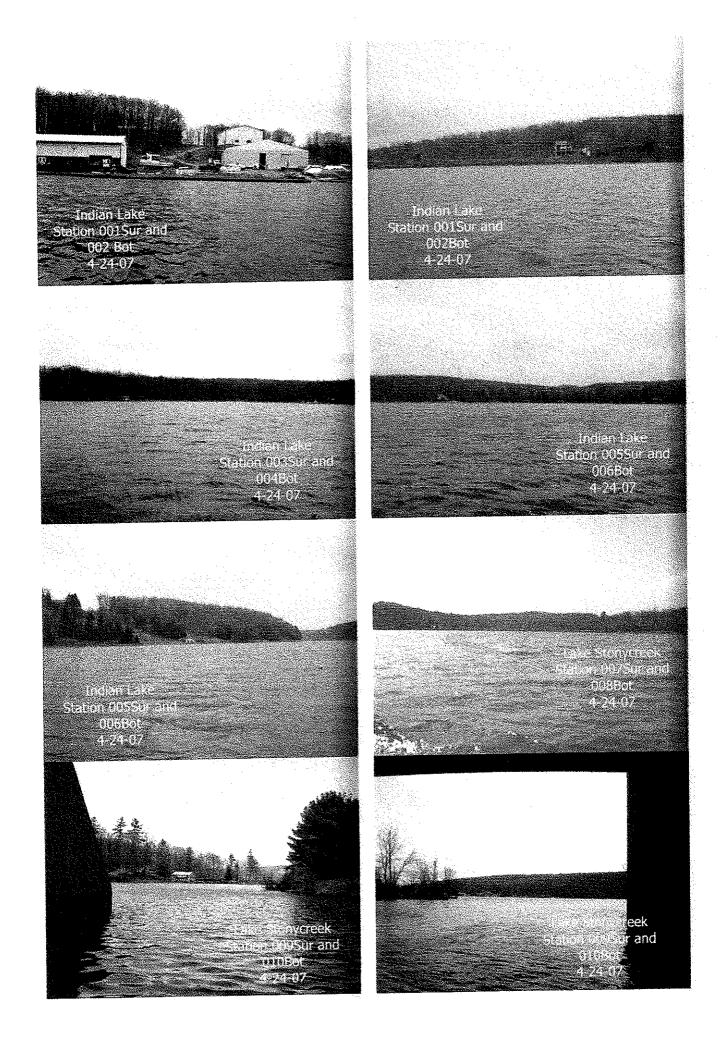
TSI Results

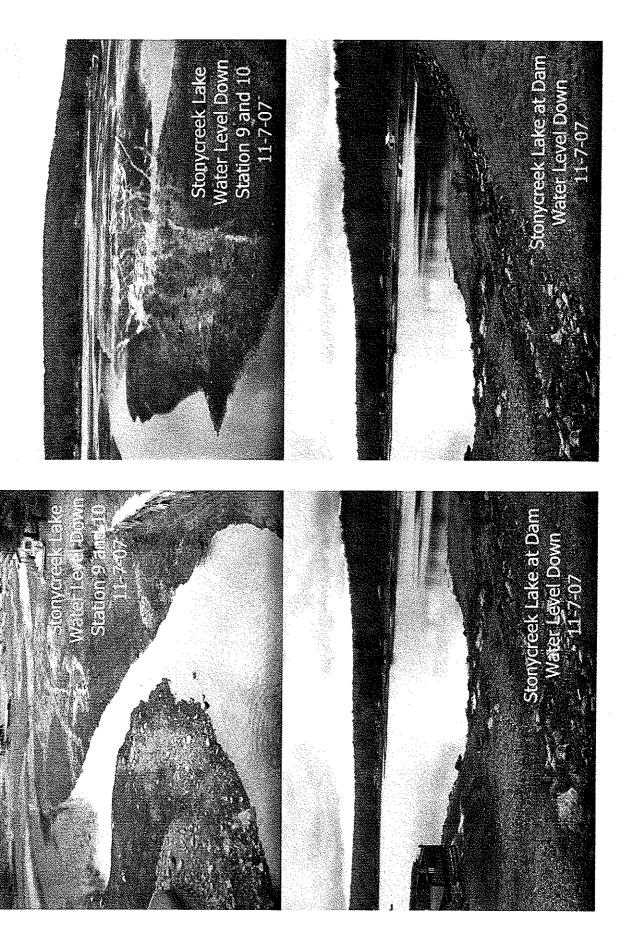
Results of the water samples collected in 2007 showed nitrogen and phosphorus amounts comparable for both lakes. The highest reading of total nitrogen and phosphorus for Indian Lake was 0.54 mg/l and 0.018 mg/l, respectfully. The highest reading of total nitrogen and phosphorus for Stonycreek Lake was 0.50 mg/l and 0.017 mg/l, respectfully. The average total nitrogen and phosphorus for Indian Lake was 0.35 mg/l and 0.0094 mg/l, respectfully. The average total nitrogen and phosphorus for Stonycreek Lake was 0.38 mg/l and 0.013 mg/l, respectfully. Indian and Stonycreek Lakes are phosphorus limited (See Attachment C).

Secchi disk readings for Indian Lake reached a depth of 5.5 meters during the fall sample at station location 005 and 006. Secchi disk readings for Stonycreek Lake reached a depth of 2.75 meters during the spring sample at station location 009 and 010. Alkalinity was slightly higher in Stonycreek Lake with a total year average of 26.08 mg/l compared to 21.64 mg/l for Indian Lake.

The average Trophic State index (TSI) on total phosphorus for 2007 calculated to 36.55 for Indian Lake and 40.59 for Stonycreek Lake. The average TSI score for chlorophyll a calculated to 47.37 for Indian Lake and 47.56 for Stonycreek Lake and the average TSI on secchi scored 40.12 for Indian Lake and 45.74 for Stonycreek Lake. These TSI results when reviewed together indicate that both lakes are mesotrophic (scores ranging between 40 and 50).

In addition to the lake data collected, the average TSI on phosphorus of Clear Run and Calendar Run combined, calculated to 48.21 (See Attachment C). This TSI score indicates mesotrophic influence.

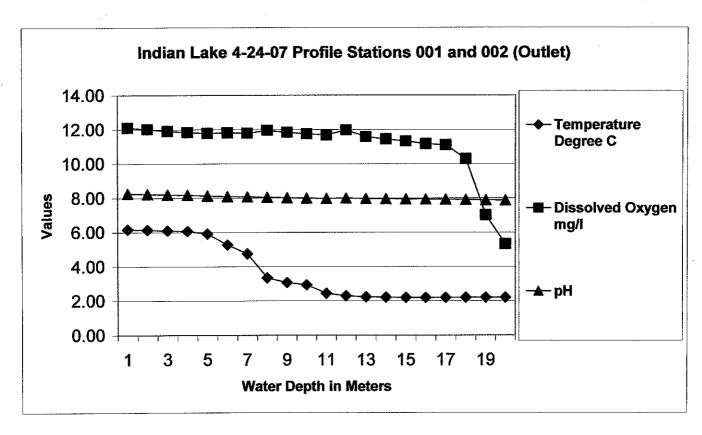

Summary

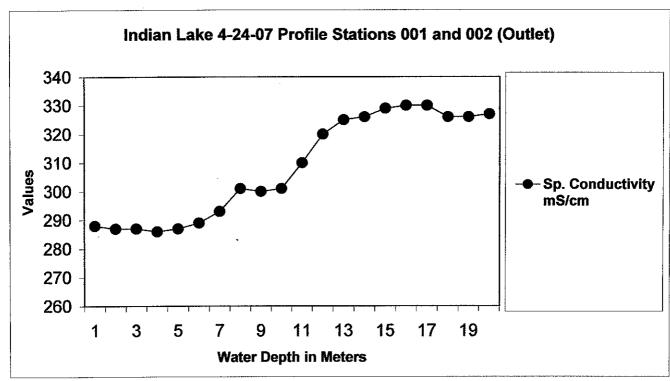

The water chemistry profiles collected throughout the year showed mostly normal lake stratification and indicated some evidence of eutrophication with lower dissolve oxygen and higher specific conductivity at bottom depths. All Trophic State Index scores calculated for Indian Lake, Stonycreek Lake, and the streams Clear Run and Calendar Run in 2007 range between 40 and 50. Indian Lake and Stonycreek Lake are presently mesotrophic. Indian Lake is one of the best scoring lakes in the Commonwealth of Pennsylvania.

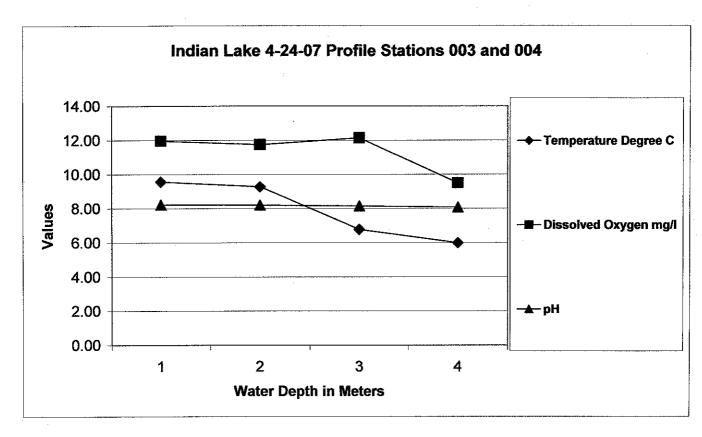
cc Files

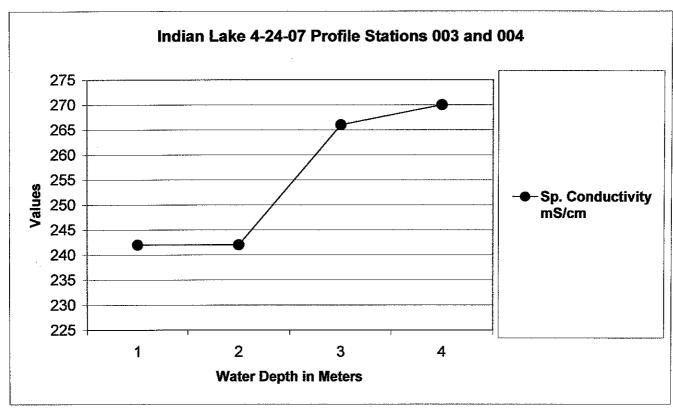
Attachment A

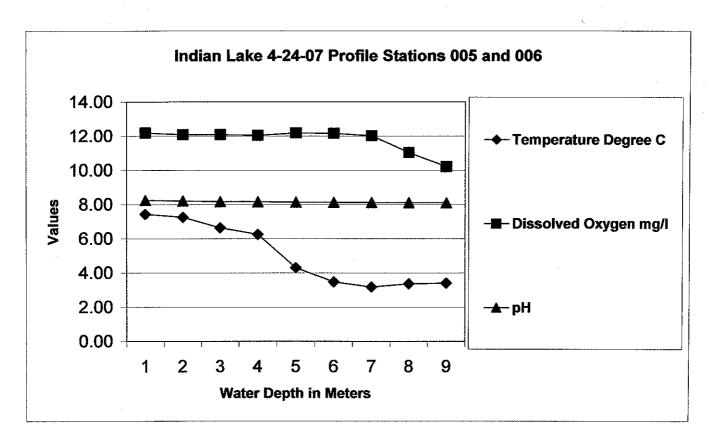
Digital Photographs of Indian Lake and Stonycreek Lake Sampling Stations 2007

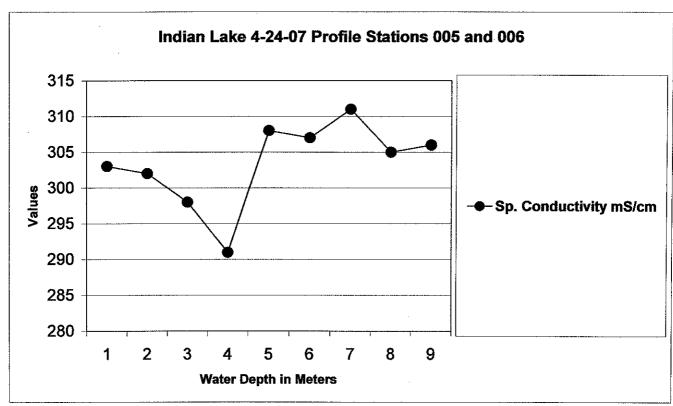

Attachment B

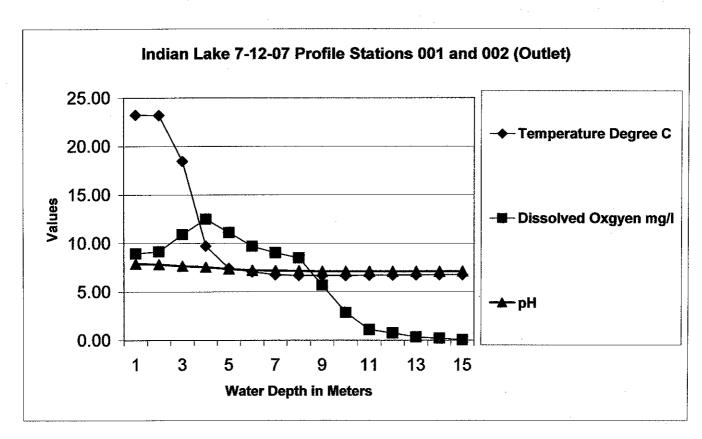

Indian Lake and Stonycreek Lake Water Column Profiles
And Chart Displays
2007

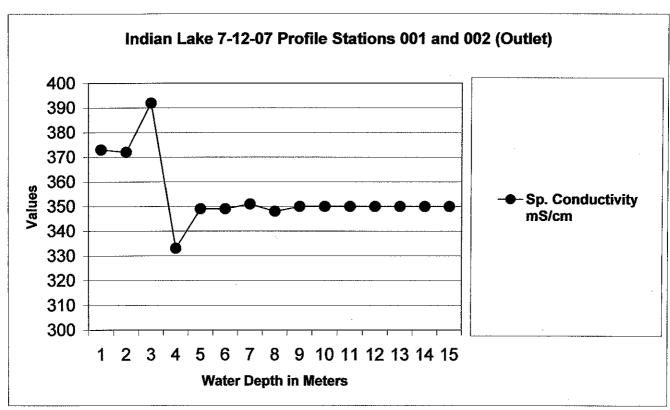

profile for							-	C- C-
Indian Lake Spring	Date	Time	Station	Depth (m)	Temp. (C)	D.O. (mg/l)	рH	Sp. Cond (mS/cm
_at 40 01.819	4/24/2007	1130	Deepest Part At Outlet	1	6.17	12.10	8.26	288
Long 78 52.267			001 Surface	2	6.14	12.01	8.23	287
Long 10 02.201			002 Bottom	3	6.10	11.90	8.19	287
			504 6040!!!	4	6.07	11.83	8.17	286
				5	5.91	11.78	8.13	287
				6				
					5.27	11.81	8.09	289
				<u>7</u> 8	4.75	11.78	8.07	293
Epilimnion					3.35	11.95	8.04	301
				9	3.08	11.83	8.02	300
				10	2.94	11.74	8.00	301
				11	2.44	11.68	7.98	310
			•	12	2.30	11.97	8.00	320
				· 13	2.24	11.58	7.97	325
				14	2.22	11.44	7.96	326
				15	2.20	11.32	7.94	329
				16	2.19	11.16	7.93	330
				17	2.19	11.09	7.92	330
				18	2.20	10.28	7.90	326
				19	2.20	7.00	7.89	326
				20	2.20	5.31	7.87	327
				20	2.20	3.51	7.07	321
Indian Lake Spring	4/24/2007	1230	Second Site Near	1	9.56	11.96	8.23	242
			proposed development	2	9.27	11.74	8.20	242
Epilimnion			003 Surface	3	6.78	12.14	8.15	266
			004 Bottom	4	5.99	9.50	8.08	270
Indian Lake Spring	4/24/2007	1315	Third Site	1	7.43	. 12.19	8.24	303
:				2	7.25	12.08	8.21	302
			005 Surface	_	6,64	12.08	8.17	298
			006 Bottom	4	6.25	12.04	8.16	291
			COO BOILOIN	5	4.30	12.18	8.13	308
Eplimnion								
				6	3.48	12.16	8.12	307
				7	3.18	12.01	8.11	311
				8	3.36	11.04	8.10	305
•				9	3.40	10.21	8.09	306
								Sp. Cond
Indian Lake Summer	Date	Time	Station	Depth (m)	Temp. (C)	D.O. (mg/l)	pН	(mS/cm
Lat 40 01,819 Long 78 52.267	7/12/2007	0945	Deepest Part At Outlet	1	23.24	8.95	7.90	373
			001 Surface	2	23.21	9.15	7.82	372
Epilimnion			002 Bottom	3	18.46	10.91	7.64	392
				4	9.72	12.50	7.55	333
				5	7.41	11.10	7.35	349
				6				
				-	7.05	9.69	7.21	349
				7	6.75	9.03	7.19	351
				8	6.67	8.49	7.15	348
				9	6.67	5.67	7.10	350
				10	6.68	2.86	7.10	350
				11	6.71	1.11	7.11	350
				12	6.72	0.76	7.11	350
				13	6.74	0.34	7.11	350
				14	6.75	0.21	7.11	350
				15	6.76	0.05	7.12	350

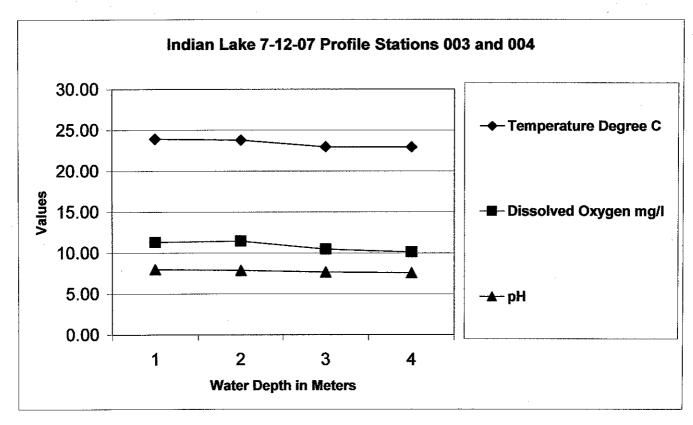

Indian Lake Summer	7/12/2007	1030	Second Site Near	1	23.93	11.30	7.98	346
			proposed development	2	23.78	11.45	7.87	345
			003 Surface	3	22.96	10.46	7.67	355
•			004 Bottom	4	22.94	10.12	7.58	355
Indian Lake Summer	7/12/2007	1100	Third Site	1	23.94	11.58	7.88	383
				2	23.88	11.64	7.79	383
			005 Surface	3	23.69	11.60	7.72	384
			006 Bottom	4	22.86	11.75	7.63	385
Epilimnion				5	17.61	12.30	7.45	407
				6	15.16	12.16	7.26	391
				7	15.32	11.67	7.17	385
								Sp. Con
Indian Lake Fall	Date	Time	Station	Depth (m)	Temp. (C)	D.O. (mg/l)	pН	(mS/cn
Lat 40 01.819	11/7/2007	0915	Deepest Part At Outlet	1	10.60	8.40	6.21	383
Long 78 52.267			001 Surface	2	10.65	8.31	6.28	383
Long to James			002 Bottom	3	10.65	8.25	6.34	383
				4	10.65	8.15	6.39	383
				5	10.65	8.15	6.41	383
				6	10.66	8.21	6.43	383
				7	10.65	8.04	6.44	383
				8	10.66	8.08	6.46	383
				9	10.65	8.01	6.47	383
				10	10.65	8.19	6.48	383
					10.63	8.05		383
				11			6.50	
				12	10.63	8.02	6.51	383
				13	10.48	6.72	6.59	383
Indian Lake Fall	11/7/2007	1000	Second Site Near	1	8.70	9.57	6.57	381
naar jako I dii	, ,, ,,		proposed development	2	8.78	9.24	6.64	381
			003 Surface	3	8.80	1,49	6.69	380
			004 Bottom	•	5.24			
			This d 00 -					
Indian Lake Fall	11/7/2007	1230	Third Site	1	10.27	8.84	6.59	395
				2	10.29	8.73	6.66	395
			005 Surface	3	10.29	8.73	6.66	395
			006 Bottom	4	10.30	8.68	6.69	395
				5	10.30	8.54	6.69	395
				6	10.30	8.62	6.69	395
				7	10.29	8.46	6.70	395
				8	10.30	1.86	6.62	395

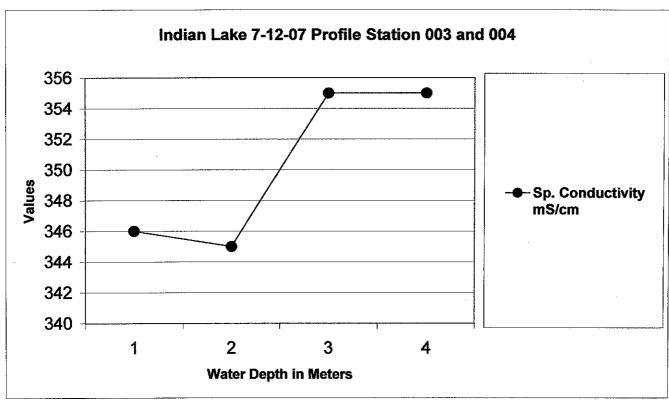

At Epilimnion the next D.O reading should be above 5.0(mg/l).

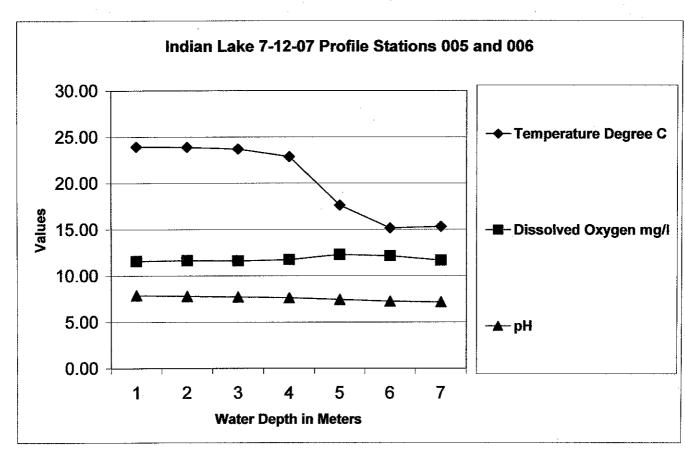


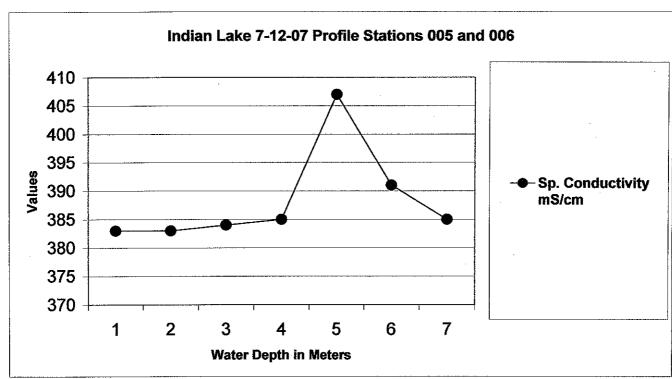


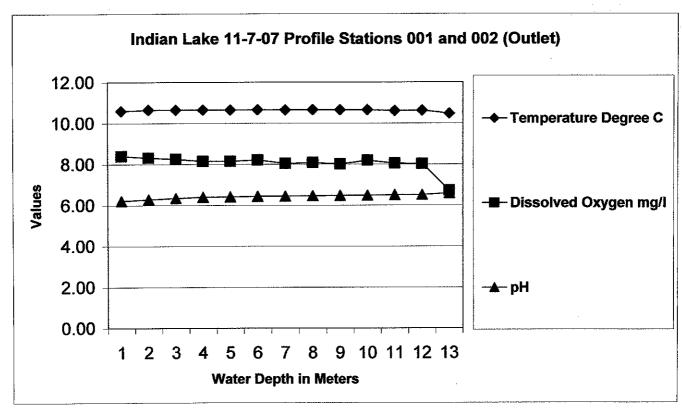


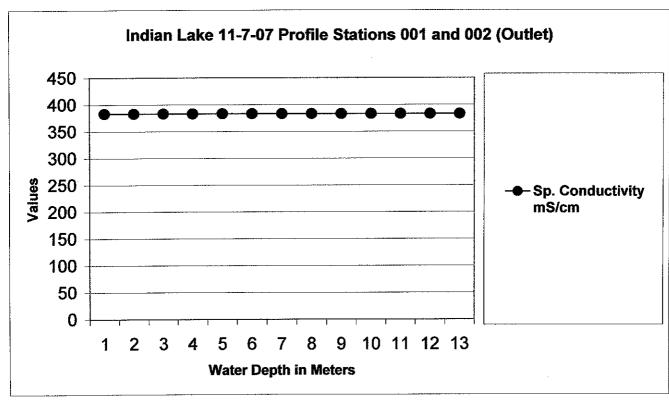


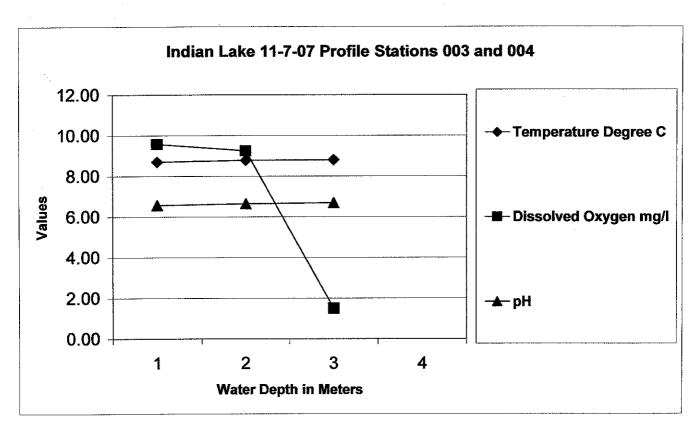


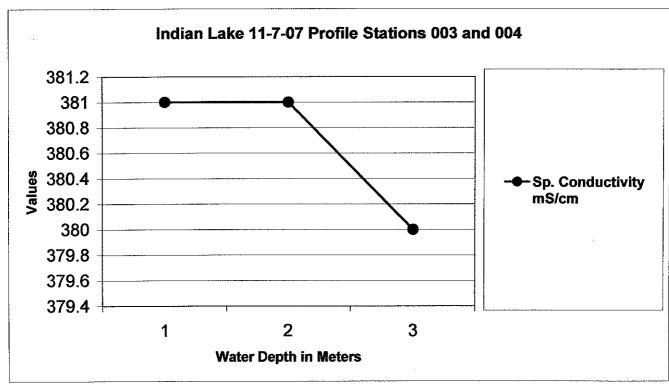


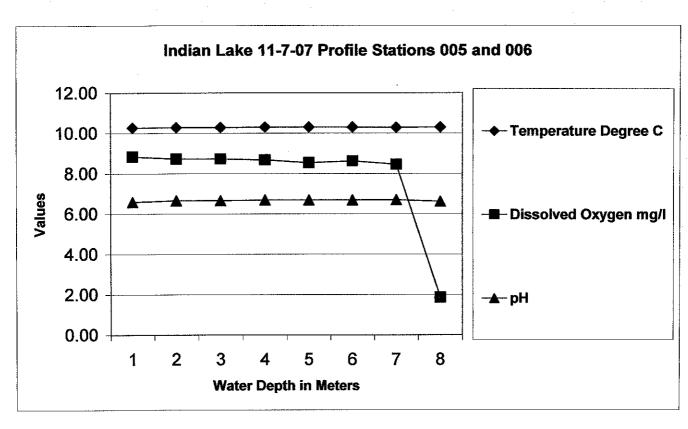


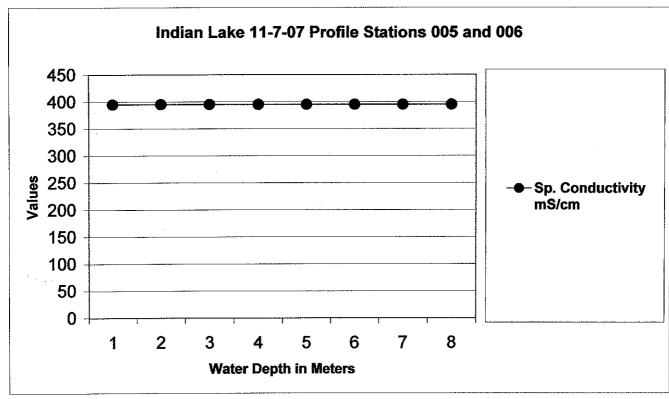


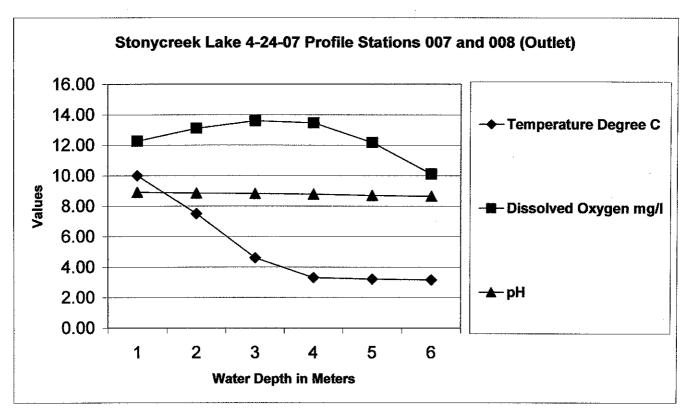


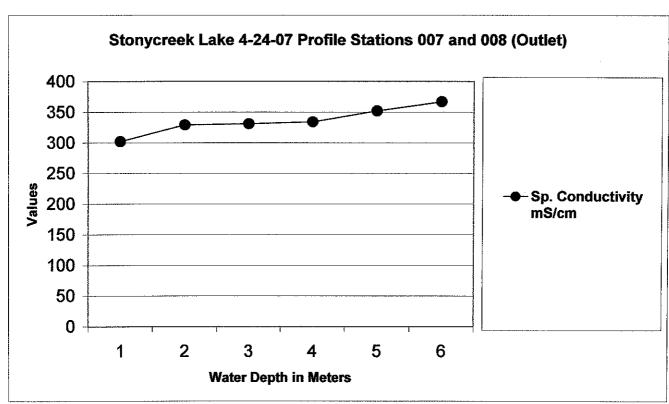


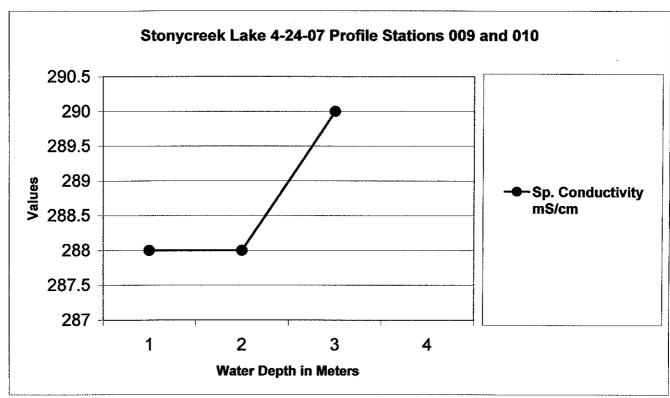


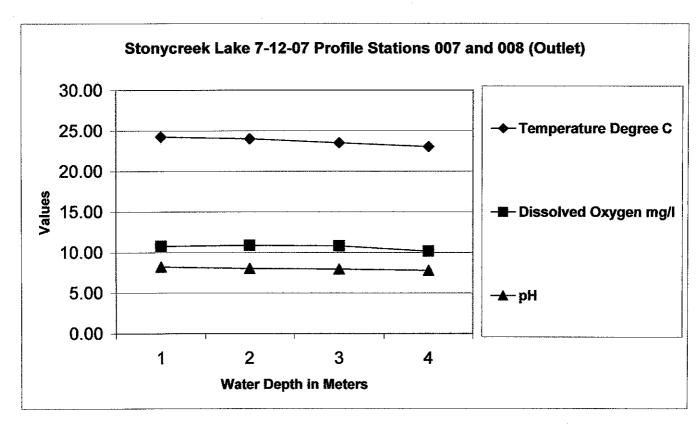


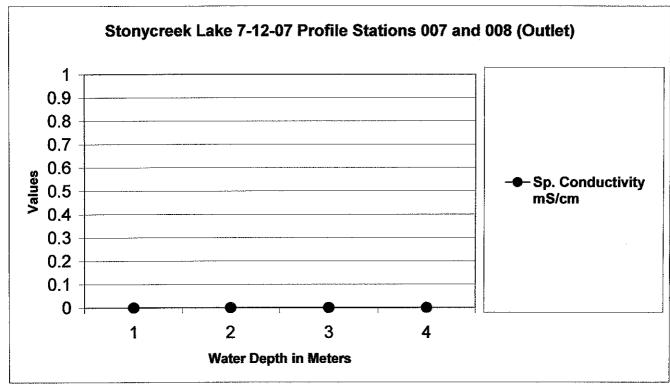


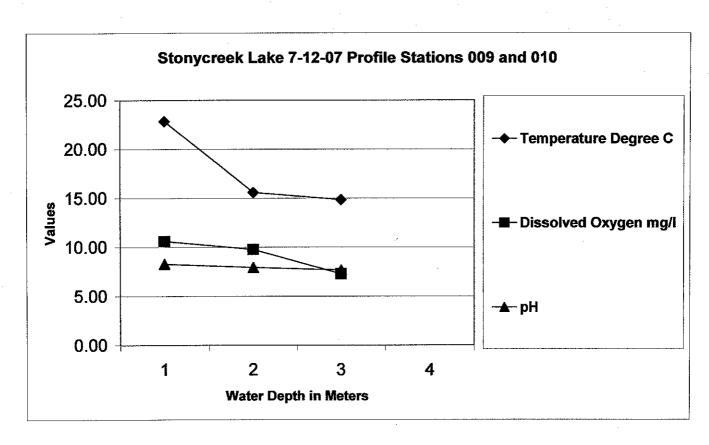


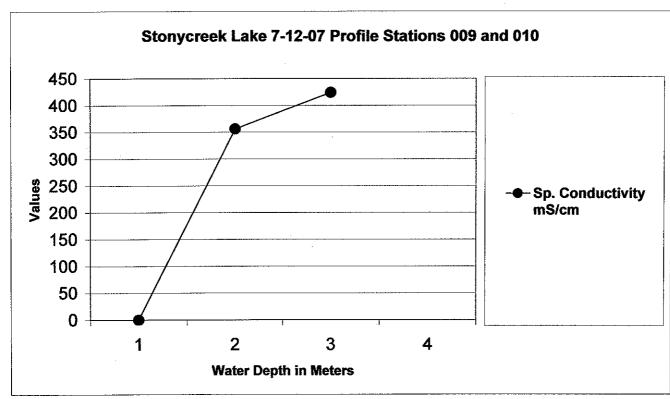





Lake Stony Creek Spring	Date	Time	Station	Depth (m)	Temp. (C)	D.O. (mg/l)	pН	Sp. Cond (mS/cm)
.at 40 01.190 Long 78 53.492	4/24/2007	1430	Deepest Part Near Outfall	1	10.00	12.26	8.91	302
Epilimnion			007 Surface	2	7.50	13.10	8.86	329
			008 Bottom	3	4.61	13.60	8.82	331
				4	3.31	13.46	8.78	334
				5	3.21	12.17	8.70	352
				6	3.16	10.10	8.65	367
Lake Stony Creek Spring	4/24/2007	1515	Second Site Under Bridge	1	7.88	11.70	8.89	288
. , ,			009 Surface	2	7.66	11. 6 7	8.83	288
			010 Bottom	3	7.35	11.57	8.78	290
		_	0.5					Sp. Cond
ake Stony Creek Summer	Date	Time	Station	Depth (m)	Temp. (C)	D.O. (mg/l)	pH	(mS/cm)
Lat 40 01.190 Long 78 53.492	7/12/2007	1230	Deepest Part Near Outfall	1	24.25	10.76	8.21	*564
			007 Surface 008 Bottom	2	24.01	10.89	8.03	*563
			008 BOROIII	3 4	23.51 23.04	10.81 10.15	7.94 7.79	*558 *555
Lake Stony Creek Summer	7/12/2007	1308	Second Site Under Bridge	1	22.84	10.60	8.29	*500
Epilimnion			009 Surface	2	15.59	9.76	7.93	356
			010 Bottom	3	14.85	7.27	7.67	424
.ake Stony Creek Fall	Date	Time	Station	Depth (m)	Temp. (C)	D.O. (mg/l)	pН	Sp. Cond. (mS/cm)
Lat 40 01.190 Long 78 53.492	11/7/2007	0915	Deepest Part Near Outfall 007 Surface 008 Bottom	1	5.94	9.95	6.35	*578
Lake Stony Creek Fall	11/7/2007	1000	Second Site Under Bridge 009 Surface 010 Bottom	1	7.18	9.36	6.38	384







Attachment C

Standard Analysis 038 Water Chemistry Data Table
And Lake TSI Evaluation for Indian Lake, Stonycreek Lake,
And Calendar Run and Clear Run
2007

001 top 3 17.20 002 bott 1.6 16.80 003 top 1.6 16.80 004 bott 1.6 16.80 004 bott 2.1 18.00 005 top 2.1 18.00 007 bott 7 22.00 003 top 5 24.00 004 bott 5 25.80 005 bott 5 25.60 004 bott 5.5 25.40 005 bott 5.5 25.40 006 bott 5.5 25.40 007 bott 5.5 25.40 008 bott 5.5 25.40 008 bott 2.76 25.00 009 bott 2.75 25.40 009 bott 4 29.40 009 bott 2.5 30.20 000 bo		0 0	13.7 Sq. Miles Somerset 457 days 3420 71 ft 12 meters Calendars Run 8 18E 8 498.7 56-103 8 1-2-1 40 01.7 78 52.3 CWF Somerset 17.07 days 430
001 top 3 002 bott 003 top 1.6 004 bott 005 top 2.1 006 bott 001 top 7 002 bott 003 top 35 003 top 55 004 bott 007 top 5.5 008 bott 008 bott 009 top 2.76 009 top 2.76 009 top 2.76 000 bott 000 top 001 000 top 2.5 000 bott 000 top 2.76 000 top 001		spring 1 spring 2 summer1 summer 2 summer 3 fall 1 fall 2 fall 3 fall 3 Spring 1 Spring 2	Spring 1 spring 2 spring 3 Summer1 summer 3 summer 3 fall 1 fall 2 fall 3 Spring 1 Spring 2 Spring 2
002 bott 003 top 1.6 004 bott 005 top 2.1 006 bott 007 top 5 008 bott 007 top 6.5 008 bott 007 top 1.5 008 bott 009 top 2.75 009 top 2.75 009 top 2.75 009 bott 000 top 2.75 000 bott 000 bott 000 top 2.75 000 bott 000 bott 000 top 2.75 000 bott 000 bott 000 bott 000 top 2.75 000 bott			Spring 2 Spring 3 Summer1 Summer2 Summer 3 Summer 3 fall 1 fall 2 fall 3 fall 3 Spring 1 Spring 2
005 top 1.0 006 bott 2.1 006 bott 7 007 top 7 008 bott 8 009 bott 6 000 bott 6 000 bott 6 000 bott 7 000 bott 7 000 bott 7 000 bott 6 000 bott 6 000 bott 7 000 bott 6 000 bott 7 000 bott 7 000 bott 7 000 bott 1.5 000 bott 1			spring 3 spring 3 summer1 summer 2 summer 3 fall 1 fall 2 Spring 1 Spring 2
005 top 2.1 006 bott 7 007 top 7 008 bott 8 009 top 5 009 bott 9 000 bott 9 000 bott 9 000 bott 9 000 top 5 000 top 5 000 top 7 000 bott 9 000 top 7 000 top			tun summer 2 summer 2 summer 3 summer 3 fall 1 fall 2 Spring 1 Spring 2
000 bott 000 000 000 000 000 000 000 000 000			summer 2 summer 3 fall 1 fall 2 fall 3 Spring 1 Spring 2
002 bott 3 003 top 3 004 bott 5 005 top 5 006 bott 6 007 top 1.5 008 bott 6.5 008 bott 7 007 top 1.5 008 bott 6 007 top 7 007 top 7 007 top 7 007 top 7 008 bott 7 009 top 2.76 010 bott 6 009 top 2.76 010 bott 7 009 top 7 009 t			summer 3 summer 3 fall 1 fall 2 Spring 1 Spring 2
003 top 3 004 bott 5 005 top 5 006 bott 6 001 top 5 002 bott 3.5 003 top 3.5 006 bott 6.5 007 top 1.5 008 bott 7 007 top 1.5 008 bott 6 000 top 2.75 008 bott 7 007 top 7 007 top 7 008 bott 7 009 top 2.5 009 top 2.5 009 top 2.5 009 top 6 000 top 6 000 top 7 000 top 7 000 top 7 000 top 6			summer 3 summer 3 fall 1 fall 2 Spring 1 Spring 2
004 bott 5 005 top 5 006 bott 001 bott 002 bott 003 top 3.5 007 top 5.5 008 bott 007 top 1.5 007 top 1.5 008 bott 007 top 2.75 009 top 2.75 000 top 2.5 000 top 001 001 001 001 001 001 001 001 001 00		!	fall 1 fall 2 spring 2 Spring 2
005 top 5 006 bott 0001 top 5 0002 bott 0003 top 3.5 0004 bott 0005 top 5.5 006 bott 007 top 1.5 008 bott 007 top 4 008 bott 007 top 2.75 008 bott 007 top 2.75 008 bott 007 top 2.75 008 bott 007 top 4 008 bott 007 top 2.5 010 bott 007 top 001 008 bott 009 top 2.75 010 bott 000 top 001			fall 1 fall 2 spring 2 Spring 2
001 top 5 002 bott 6 002 bott 3.5 004 bott 6.5 006 bott 3.97 007 top 1.5 008 bott 7.7 007 top 2.75 008 bott 6 007 top 2.75 008 bott 7 007 top 2.75 008 bott 7 007 top 7 008 bott 7 009 top			fall 2 fall 3 Spring 1
002 bott 3.6 003 top 3.6 004 bott 5.5 006 bott 3.97 007 top 1.5 008 bott 2.75 009 top 2.75 000 top 4 000 top 2.5 000 top 2.75 000 top 4 000 top 2.5 000 top 4 000 top 7 000 top		<u> </u>	fall 2 fall 3 Spring 1
003 top 3.5 004 bott 005 top 5.5 006 bott 3.97 007 top 1.5 008 bott 009 top 2.75 009 top 2.75 009 top 2.75 009 bott 000 top 4 000 top 2.5 009 bott 000 top 4 000 top 2.5 009 top 2.5 009 top 0.5	1		fall 3 Spring 1 Spring 2
006 bott 6.5 006 bott 3.97 007 bott 1.5 007 top 1.5 009 top 2.75 009 bott 4 007 top 2.75 009 bott 2.75 009 bott 2.5 010 bott 2.5 010 bott 1.5 009 top 2.5 010 bott 1.5 009 top 2.5 010 bott 1.5 009 top 2.5 010 bott 1.5	- Tage		fall 3 Spring 1
005 top 5.5 006 bott 3.97 007 top 1.5 008 bott 0.75 009 top 2.75 009 top 2.75 009 top 2.5 010 bott 0.00 009 top 2.5 010 bott 0.00 009 top 2.5 010 bott 0.00 009 top 0.00 009 t	1.896		fall 3 Spring 1 Spring 2
006 bott 3.97 007 top 1.5 008 bott 0.75 009 top 2.75 010 bott 4 008 bott 2.5 010 bott 0.7 009 top 2.5 010 bott 0.7 009 top 2.5 010 bott 0.7 009 top 0.5 009 top 0.5 000 top 0.	Prage		Spring 1
3.97 007 top 1.5 008 bott 2.75 009 top 4 007 top 4 008 bott 2.5 010 bott 2.5 010 bott 3.68	96		Spring 1
007 top 1.5 008 bott 2.75 009 top 2.75 000 top 4 0008 bott 4 0008 bott 2.5 010 bott 2.5		Spring 1	
007 top 1.5 008 bott 2.76 010 bott 4 007 top 4 008 bott 2.5 010 bott 2.5 010 bott 2.5 010 bott 3.5 010 bott 3.5 010 bott 3.5 010 bott 3.5 007 top 3.5 007 top 3.5 007 top 3.5 008 bott 3.5 009 bott 3.5 009 bott 3.5 009 bott 3.5		Spring 1 Spring 2	
008 bott 2.75 009 top 2.75 0009 top 2.75 000 top 4 0008 bott 2.5 010 bott 000 top 2.5 010 bott 000 top 100 top		Spring 2	
009 top 2.75 010 bott 4 007 top 4 008 bott 2.5 010 bott 7 009 top 74 007 top 74 008 bott 74 009 top 74 009 top 74 009 top 74		Spring 2	
010 bott 007 top 4 008 bott 009 top 2.5 010 bott 007 top *** 008 bott 009 top *** 009 top *** 010 bott 010 bott			
007 top 4 008 bott 2.5 009 top 2.5 010 bott ** 007 top ** 008 bott ** 009 top ** 010 bott ** 010 bott **			30#
008 top 2.5 010 bott 100 100 100 100 100 100 100 100 100 1		Summer 1	
010 bott *** 000 top top *** 000 top top *** 010 bott *** 010 bott ***		Cacaman	Dhoods Orong
007 top *** 008 bott 009 top *** 010 bott		7 5	
008 bott *** 009 top *** 010 bott ** 2.688		Fall 1	18E Fall 1
010 top 010 bott			165.97
010 bott 2.688		Fail 2	Fall
			1-2-2
	3		
	Averages	¥	
			26.0 Sq Miles CWF
	-	- 1	- 1
	쓃	ace - (Note: La	1 m below surface - (Note: La
o the	_	the water leve	sase, lowering the water leve
aken from	as t	ater sample w	sible.
t taken	ou si	water grab wa	
at surface	ken	l A sample ta	along with secchi reading.) - Chlorophyll A sample ta
oud cover	5	now flurries	- Clouds and snow flurries
o lower	r tem	flurries, ai	he north, snow flurries, ai
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	i readin	No secch:	oulence choppy, No secch
	o the aken from t taken at surface oud cover p lower g taken.	ace - (Note: Lake the water level to the ater sample was taken from water grab was not taken 1 A sample taken at surface now flurries - Cloud cover flurries, air temp lower No secchi reading taken.	ng the water level to the Water sample was taken om water grab was not tal nyll A sample taken at si snow flurries - Cloud ow flurries, air temp low flurries, air temp low y, No secchi reading tal

						;				Total	Total	2	i G H	9 P	S S	BODS	Total Residue
		Value	Date	Time	Sample No.	(mg/L)	(mg/L)	mg/L	(mg/L)	(mg/L)	rnospriorus (mg/L.)	ratio	<u>5</u> <u>6</u>	Chla	Secchi	(mg/L)	(mg/l)
	Drainage Area	2.7 Sq. Miles															
Clear Run	County	Somerset	6/12/2007	940	100	40.60	16.00	908		0.17	0.007	24.29	32.22	#REF!	#REF!		924
T	Detention time		7/11/2007	925	200	32.20	14.00	1310		0.14	0.007	20.00	32.22	#REF!	#REF!	1,50	
	River Miles		8/6/2007	1400	003	21.60	10.00	618	40.0	0.36	0.012	30.00	40.00			•	
Rain	SWP	18E	8/14/2007	1020	004	33.80	1.70	1420		0.26	0.007	37.14	32.22	#REF!	#REF!		
	Acres		8/22/2007	955	900	13.60	8.00	120	-	0.80	0.043	18.60	58.41				
	Lat		9/11/2007	905	900	30.20	20.00	772		0.28	0.018	15.56	45.85	#REF!	#REF1		
	Long		10/9/2007	925	200	41.40	1.70	1298		20.0	0.007	10.00	32.22				
		CWF															
																	ļ
ndar Run	Calendar Run Drainage Area	2.6 Sq. Miles	6/12/2007	1038	901	20.20	14.00	108		0.62	0.017	36.47	45.03	#REF	#REF!		120
Rain	County	Somerset	8/6/2007	1330	005	27.80	24.00	254	0.16	1.03	0.051	20.20	60.87	#REF!	#REF!	4.30	
	Detention time		8/22/2007	1038	003	10.00	1.70	256		0.36	0.018	20.00	45.85				
	River Miles		9/11/2007	933	900	20.20	24.00	146		0.54	0.032	16.88	54.15	#REF!	#REF!		
	SWP	18E			900												
	Acres				900												
	Lat			Averages						0.45	0.0212	21.04	48.21	#REF!	#REF!		
	Long																
		1.00															

•

•

•						
				 . •		
and a second						
			·			
	,					
					·	
				:		
		·		4		
				·	u.	
		•				
The state of the s						